

NANOSCALE SCIENCE AND ENGINEERING (NSE) at NSF

M.C. Roco

Senior Advisor for Nanotechnology, NSF Chair, Subcommittee on Nanoscience, Engineering and Technology (NSET), National Science and Technology Council (NSTC)

- Nanotechnology definition
- > The National Nanotechnology Initiative
- NSF contribution
- > Steps for advancing NSE education

Nanotechnology

Definition on http://nano.gov/omb_nifty50.htm (2000)

- Working at the atomic, molecular and supramolecular levels, in the length scale of approximately 1 – 100 nm range, in order to understand and create materials, devices and systems with fundamentally new properties and functions because of their small structure
- NNI definition encourages new contributions that were not possible before.
 - <u>novel phenomena, properties and functions at nanoscale,</u> which are nonscalable outside of the nm domain
 - the ability to measure / control / manipulate matter at the nanoscale in order to change those properties and functions
 - integration along length scales, and fields of application

Broad societal implications

(examples of societal implications; worldwide estimations made in 2000, NSF)

- □ **Knowledge base**: better comprehension of nature, life
- New technologies and products: ~\$1 trillion/year by 2015 (With input from industry US, Japan, Europe 1997-2000, access to leading experts)

Materials beyond chemistry: \$340B/y

Pharmaceuticals: \$180 B/y

Aerospace about \$70B/y

Electronics: over \$300B/y

Chemicals (catalysts): \$100B/y

Tools \sim \$22 B/y

Est. in 2000 (NSF): about \$40B for catalysts, GMR, materials, etc.; + 25%/yr

Est. in 2002 (DB): about \$116B for materials, pharmaceuticals and chemicals

Would require worldwide ~ 2 million nanotech workers (US ~40%)

- ☐ Improved healthcare: extend life-span, its quality, physical capabilities
- □ Sustainability: agriculture, food, water, energy, materials, environment; ex: lighting energy reduction ~ 10% or \$100B/y

 MC. Roco, 9/29/03

Context – Nanotechnology in the World Government investments 1977-2003

Note:

- U.S. begins FY in October, six months in advance of EU & Japan (in March/April)
- U.S. does not have a commanding lead as it had in other S&T megatrends, such as BIO, IT, space exploration, nuclear;
 U.S. ~ 35% in 2000, ~ 25% in 2003

Organizations that have prepared and contribute to the National Nanotechnology Initiative (NNI)

Estimation: Federal Government R&D funding NNI (~\$700M in 02)
Industry (private sectors) ~ NNI funding
State and local (universities, foundations) ~ 1/2 NNI funding

NNI: R&D Funding by Agency

Fiscal year (all in million \$)	2000		001 d/actual	2002 Enacted/actual		2003 2004 Request	
National Science Foundation	97	150	/150	199	/204	221	249
Department of Defense	70	110	/125	180	<i>1</i> 224	243	222
Department of Energy	58	93	/88	91.1	<i>1</i> 89	133	197
National Institutes of Health	32	39	/39.6	40.8	3 /59	65	70
NASA	5	20	/22/	35	<i>l</i> 35	33	31
NIST	8	10	/33.4	37.0	6 <i>1</i> 77	66	62
Environmental Protection Agency	-		/5.8	5	/6	5	5
Homeland Security (TSA)	-			2	/2	2	2
Department of Agriculture	-		/1.5	1.5	/0	1	10
Department of Justice	-		/1.4	1.4	/1	1.4	1.4
TOTAL	270.0	422.	0 /464.7	~ 600	/697	~ 770	~ 849

Other NNI (NSET) participants are: OSTP, NSTC, OMB, DOC, DOS, DOT, DOTreas, FDA, NRC, DHS, IC

NSF - a pioneer among Federal agencies and at the international level in Nanoscale Science and Engineering (NSE)

FY 2003: ~ 1/3 of Federal and 1/10 of World Investment

- Seven themes: Biotechnology, Nanostructures 'by design' and novel phenomena, Device and system architecture, Environmental Processes, Multiscale modeling, Nanoscale manufacturing; Societal implications and Improving human performance
- Establishing the infrastructure: over 1,600 active projects;
 20 large centers, 2 user facilities (NNIN, NCN), multidisciplinary teams
- Training and education over 7,000 students and teachers

Fiscal Year	NSF HR766
2000	\$97M
2001	\$150M
2002	\$199M
2003	\$221M
R 2004	\$249M \$350M

Congressional bills on nanotechnology (2004-2008)

<u>NNI</u>

• Bill passed in the House:

H.R.766: "Nanotechnology R&D Act of 2003",

Draft Bill pending in the Senate

189 "21st Century Nanotechnology R&D Act" 5-year "National Nanotechnology Program"

NSE: Authorized budgets for NSF

- FY 2004 \$350 million
- FY 2005 \$385 million
- FY 2006 \$424 million

Defining the vision

National Nanotechnology Initiative

(www.nano.gov and www.nsf.gov/nano)

"Review of NNI" by NRC for WH/OSTP (June 2002)

Topical reports for NSET & various agencies by Summer 2004 Revisit the vision Spring 2004: Nanotechnology Research Directions II

Integrating science and technology from the nanoscale

Broad and timely opportunity

- ➤ Understanding unity in nature, science and technology integration from the nanoscale
- ➤ Powerful transforming tools (NBIC: nano-bio-info-cogno) developing at confluence of disciplines
- ➤ Improvement of individual and group human performance becomes possible
- ➤ Reversing the "pyramid" of learning, to begin with basic concepts of unity in nature
- NBIC agents of accelerated, synergistic change in society

CONVERGING TECHNOLOGIES
FOR IMPROVING HUMAN PERFORMANCE

June 200:

(December 2001)

Online www.nsf.gov/nano, also Kluwer Academic Publ

Geographical distribution

Education and Training

- Towards systemic changes: foundation from micro to nano -

- Integrated Research and Education Make Every Lab a Place of Learning (over 7,000 trained per year)
- Curriculum development
 New courses, 10 IGERT, Nanotech Undergrad Education
- Education and outreach programs
 from K-12 to G; includes NSEE; museums; parts centers
 (see Int. J. of Eng. Education, Aug.2002, Vol. 8, for an overview of programs)
- International education opportunities
 young researchers to Japan and Europe; REU sites;
 attend courses abroad; PASI Latin America, NSF-E.C.;
 bi-lateral workshops and exchanges

Nanotechnology Undergraduate Education (NUE)

New component of the 2003 NSF Nanoscale Science and Engineering (NSF 02-148) program is focused on:

- Introductory undergraduate courses presented through the development of text, software, laboratory and demonstration experiments, and web-based resources;
- Development and dissemination of new teaching modules for nanoscale science and engineering that can be used in existing undergraduate courses, particularly during first and second year studies.

33 awards in FY 2003

Reviewed by the NSF workshop on September 11-12, 2002 at NSF (www.nanofab.psu.edu/education/nsf-nue-program.htm)

Nanoscale Science and Engineering support at NSF in FY 2004

- The budget allocation expected between \$249M (NSF Request) and \$350M (Congress bills)
- Program solicitations (about \$91M, about 1/3)
 Nanoscale Science and Engineering \$79M, NSF 03-043, by 10/22/03
 Nanoscale Science and Engineering Education \$12M, NSF 03-044
- Support in the core program (about 2/3)
 with focus on single investigator & other core

Various research and education programs in all directorates Interdisciplinary fellowships; STC, MRSEC and ERC centers Instrumentation (REG, MRI); Collaboration industry (GOALI, PFI) Network for Computational Nanotechnology National Nanotechnology Infrastructure Network

• SBIR/STTR (additional ~ \$10M)